Getting ready for new concurrency in Ruby 3 with Guilds

Ruby Guilds are the new way concurrency will be handled in Ruby 3. There's still a long way to go until we reach that point, but I believe that we can already start implementing some of the concepts that will make our lives easier when we reach  Ruby 3.

Note: this is not an article explaining what are Guilds and how do they work. You can read excellent explanations on that here:

Note 2: everything here is based on some assumptions which means that in few years the concept might look totally different. However it doesn't mean that you shouldn't use good practices or some recommendations that I describe below.

Guilds basic concepts in a TL;DR version

  • Guilds have at least one thread (and a thread has a fiber)
  • Threads in different guilds can run in parallel
  • Threads in a same guild can not run in parallel because of GIL/GVL/GGL (Giant Guild Lock)
  • A guild can't access the objects of other guilds
  • Guilds are allowed to communicate with each other using channels (Guild::Channel)
  • Objects can be copied between guilds (deep copy)
  • Objects can be moved between guilds
  • Immutable objects (deeply immutable) can be shared between guilds

It sounds simple (and Koichi said that the initial concept implementation has only 400 lines), but it creates many problems that will have to be solved. I will try to cover some of them as they might have an impact on the overall performance of our code.

Don't try to unlearn locking and multi threading Ruby 2 approach

TL;DR: you will still have to know how to deal with multi threading and it's problems the way it is handled in Ruby 2.

GVL is insufficient to guard against data races on Ruby2 and this won't change inside single guild with multiple threads. Since Ruby core team aims to make Ruby 3 compatible with Ruby 2 software (so the community won't split with incompatible Ruby versions), any Ruby 2 software will run in Ruby 3 in a single Guild. So all your synchronization and locking problems won't go away without an effort.

Scaling with guilds won't be linear so don't think it will solve all your problems

Guilds won't be silver bullets. They will give Ruby programmers a new, great set of tools but they will for sure create some problems. If you hope that memory usage will drastically go down and that performance will go up, without you doing anything you might be really disappointed when new Ruby appears.

Objects owners mean more checking

TL;DR: the less you share the smaller the transferring overhead will be.

Objects will have guild owners. It means that Ruby will have to have references to which guild an object belongs. One of the slides from Koichi's presentation states that an exception will be thrown when trying to access object from other guild. It means that Ruby will have to have some sort of checker that will run either on:

  • every object access
  • every object access for objects that were transfered at least once (flag or something?)
  • every object access of an object that is not frozen and references in other guilds

Either way, there will be way more access checking. Ruby already checks the class of each object on it's access, so maybe this could be combined together.

What that means for us? The less objects we will share between guilds the faster they will run.

Transferring ownership - moving references vs copying

TL;DR: It might be faster (and for sure safer) to start using immutable structures if you plan to transfer a lot of data in between guilds.

Programmers will definitely want to transfer ownership not only for simple objects but also for more complex (and big) data structures. It means that Ruby not only will have to move main objects but all sub-objects (arrays of arrays of objects, etc).

And here a question emerges: wouldn't it be better to just copy the whole structure instead of updating all the references? Is there even a programming language that has a GC and allows moving mutable objects directly (without deep copying) between threads?

Method cache will remain global

TL;DR: OpenStruct will be a worse idea than it is right now. Try even harder not to invalidate method cache too much.

When we redefine a method (or add new), method lookup will have to be performed an cache invalidation needs to occur on all the guilds. This means that we will have to stop execution of all the guilds at once (since there shouldn't be a case when one runs on an old method version and another already uses new one).

If you wonder what OpenStruct does to your Ruby code and what impact exactly it has, you can read my article about that here: http://mensfeld.pl/2015/04/ruby-global-method-cache-invalidation-impact-on-a-single-and-multithreaded-applications/.

Global data

TL;DR: Freeze all the global data you define, stop using global variables, don't redefine stuff unless you really need to and don't overwrite constants.

By global data I mean:

  • Global variables
  • Class and module objects
  • Class variables
  • Constants
  • Instance variables of class and module objects

Operations that redefine things will be either impossible or slower. It will impact also access (mutable constants access between guilds).

Summary

There isn't much to summarize since for each section there's a TL;DR but it's worth pointing out that we need to be more cautions about sharing our data and about doing a lot of meta-programming beyond good practices (like redefining dynamically built constants) and everything should be fine.

Cover photo by: Shuets Udono on Creative Commons license

Categories: Ruby, Software

2 Comments

  1. Do you have any idea if Ruby 3 will have some sort of mechanism for dynamically controlling the guilds? I mean, what guilds are started, catching the exceptions, restarting them when needed etc?

    I am mind blown with Eralng’s handling of concurrency. Not only it’s pretty easy to understand parallelism (thanks to immutable data structures), but the supervision / control mechanism is quite awesome.

    Threads are a mess in most languages. Erlang’s the only solution that seems elegant to me, one that we, programmers with limited brain capacity can actually understand, design and control.

    Guilds so far look like another layer of abstraction, and APIs to learn, not sure if that will do more harm or good in the end.

  2. Maciej Mensfeld

    December 11, 2016 — 15:29

    Yes it will have. For communication, messaging and controlling there will be Guild::Channel mechanism probably with messages queues. I expect it to be a mix of what we have now and a partial actor model.

    Erlang’s handling of concurrency (and Elixirs as well obviously) is awesome, however it won’t happen in Ruby for many reasons. Ruby core team proposition (with guilds) has it’s traidoffs but I believe that it’s something more than a next API to learn. Majority of programmers won’t have to bother with it at all as for webservers and things like that guilds management will be implemented on a server level. I don’t expect Ruby to have out of the box sufficient enough solutions for managing, restarting and monitoring guilds, but I expect community to design tools for that and then working with it won’t be a pain in the ass.

    Also it is worth noting that in many cases you might consider an Erlang process to be equal in terms of functionality to a Ruby guild. On the other hand having guilds that have threads that have fibers gives you something different – you can design semi parallel and concurrent systems that allow you to have both: parallelism where you need it and GGL for some use cases).

Leave a Reply

Your email address will not be published. Required fields are marked *

*

Copyright © 2024 Closer to Code

Theme by Anders NorenUp ↑